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P1 NONCONFORMING FINITE ELEMENT METHOD FOR THE SOLUTION OF

RADIATION TRANSPORT PROBLEMS

KAB SEOK KANG*

Abstract. The simulation of radiation transport in the optically thick flux-limited diffusion regime has

been identified as one of the most time-consuming tasks within large sim_llation codes. Due to multimaterial

complex geometry, the radiation transport system must often be solved on unstructured grids. In this paper,

we investigate the behavior and the benefits of the unstructured P1 nonconforming finite element method,

which has proven to be flexible and effective on related transport problems, in solving unsteady implicit

nonlinear radiation diffusion problems using Newton and Picard linearization methods.

Key words, nonconforming finite elements, radiation transport, ine)act Newton linearization, multigrid

preconditioning

Subject classification. Applied and Numerical Mathematics

1. Introduction. Radiation transport in astrophysical phenomena and inertial confinement fusion is

often modeled using a diffusion approximation [12, 17, 18, 20, 21, 22, 24]. When the radiation field is not in

thermodynamic equilibrium with the material a coupled set of time dependent diffusion equations is used to

describe energy transport. These equations are highly nonlinear and exhibit multiple time and space scales.

Implicit integration methods are desired to overcome time step restrictions.

Nonconforming finite-element methods have proven flexible and effective on incompressible fluid flow

problems such as incompressible Stokes and Navier-Stokes equations [10, 11]. In the P1 nonconforming

method, the degrees of freedom lie on midpoints of edges. Therefore, the number of connections of degrees

of freedom with each others at most four (four at interior edges and two at boundary edges) which is the

same number of connections of degrees of freedom in structured finite difference methods. In contrast,

in the P1 conforming method, the number of connections of degrees of freedom is at least four except at

boundary points, and depends the triangulation and position of poinl_s. The number of connections of

degrees of freedom determines the number of nonzero entries of genera_.ed matrices and plays an essential

role in performance of parallel implementations because of the communication required in kernel operations

like matric-vector multiplication. P1 nonconforming methods generate matrices that have a constant small

number of nonzero entries for each row, and therefore have some advantages in parallel implementation and

performance.

Because many nonlinear elliptic problems are well solved by conforming finite element methods, non-

conforming methods are still rare for such problems. However nonconforming methods may resolve features

of solutions of nonlinear problems not well represented by conforming methods. In this research, a noncon-

forming methodis shown to resolve very sharp changes of energies on heterogeneous domains. The results

are very similar to the solutions of the finite volume method with an edge-based flux limiter [19].

To solve nonlinear problems, one usually employs linearization techniques. Many modelers use Picard

and Newton methods to linearize. Picard's method is easy to understand and implement, but converges

*ICASE, Mail Stop 132C, NASA Langley Research Center, Hampton, VA 23681 2199 email: kksO02_icase.edu. This

research was partially supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-
97046 while the author was in residence at ICASE, NASA Langley Research Center, !lampton, VA 23681-2199. This work was

also partially supported by postdoctoral fellowships program from Korea Science &:Engineering Foundation (KOSEF).



slowly.Newton'smethodhasa second-orderconvergenceratebut requirestheJacobianof theoriginal
nonlinearsystem.In manynonlinearproblems,aninexactNewtonmethodworkswell,with lessstorage
andoperationcountexpense[8]. In thispaper,westudythebehaviorof thesethreemethodsona model
radiationtransportproblem.

Becausethesystemgeneratedfromsomelinearizationofthenonlinearproblemisusuallynonsymmetric,
weusepreconditionedGMRES[23].Asa preconditioner,weconsidermultigrid.Multigridrepresentsan
importantadvancein algorithmicefficiencyforthesolutionof largeproblems[2,3,4, 14,19,25].

Tousemultigrid,weneedto defineintergridtransferoperatorsbetweennonconformingfinite-element
spaces.Duetothenon-nestednessofnonconformingspaces,thereisnonaturalintergridtransferoperator.In
previousstudiesofthenonconformingmultigridmethod,theaveragevalueoftwoadjacentelementsisusedto
gettheinterpolatedvalueatanode.Nonconformingmultigridwiththisintergridtransferoperatorisagood
solverfor linearsystemsandsomenonlinearsystemswithsmoothnonlinearcoefficients[1,5, 6,9, 15,16].
Howeverthisintergridtransferoperatordoesnotpreservepositivityoffunctions,whichisanessentialpartof
radiationtransportproblemsbecauseenergyandtemperaturearealwayspositive.Thereforesomenonlinear
problemswithdiscontinuouscoefficients,boundconstraintson solutions,andrapidlychangingsolutions,
like theradiationtransportproblem,cannotusethis intergridtransferoperatorbecausethe coarselevel
approximationobtainedfromthefinelevelapproximationdoesnotsatisfysolutionbounds,andonecannot
generatethecoarselevelsystemsor solvethecoarselevelproblems[15].Toovercomethesedifficulties,we
usea newandsimpleintergridtransferoperatorthat preservespositivityandsolvestheabovementioned
problem.Howevermultigridwith this intergridtransferoperatorisslowerthanwith thepreviousoperator.
Therefore,weusethesimpleintergridtransferoperatorto derivecoarselevelsystemsandtheaveragevalue
intergridoperatorto solvethelinearsystems.

Therestof thepaperisorganizedasfollows.In section2, wedescribea modelradiationtransport
andits P1 nonconforming discretization. In section 3, we consider a discretization in time, derive the

linearizations by Picard and Newton method, and describe the Inexact Newton method. In section 4, we

describe preconditioned GMRES and the nonconforming multigrid preconditioner. Numerical experiments

are given in section 5.

2. Radiation transport model and P1 nonconforming discretization. Under the assumption of

an optically thick medium (short mean free path of photons) a first-principles statement of radiation transport

reduces to the radiation diffusion limit. A particular idealized dimensionless form of such a system, known

as the "2T" model, can be written as:

OE

Ot
OT

Ot

with

-- - V-(DrVE) = a_(T 4 - E), (2.2.1)

--- V.(DtVT)= -a_(T 4 - E), (2.2.2)

z 3 1 5

a_ = _-_, Dr(T,E) = 3a_ + -_ tVEJ' and Dr(T) = icT_. (2.2.3)

Here, E(x, t) represents the photon energy, T(x, t) is the material temperature, aa is the opacity, and

is the material conductivity. In the non-equilibrium case, the nonlinear source terms on the right-hand

side are nonzero and govern the transfer of energy between the radiation field and material temperature.

Additional nonlinearities are generated by the particular form of the diffusion coefficients, which are functions

of the E and T fields. In particular, the energy diffusion coefficient, Dr(T, E) contains the term IVE I which
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FIG. 1. Domain of model problem

refers to the gradient of E. This limiter term is an artificial means of ensuring physically meaningful energy

propagation speeds (i.e. no faster than the speed of light). The atomic number z is a material coefficient,

and while it may be highly variable, it is only a function of position (i.e. z = f(x, y) in two dimensions).

The two model problems considered in this study are taken from 119] and depicted in Figure 1. We

consider a unit square domain of similar material with atomic number z = 1 and a unit square domain of

two dissimilar materials, where the outer region contains material with _m atomic number of z = 1 and the

inner region (1/3 < x < 2/3, 1/3 < y < 2/3) contains material with an atomic number of z = 10. The top

and bottom walls are insulated, and inlet and outlet boundaries are specified using mixed (Robin) boundary

conditions, as shown in the figure. For convenience, we represent the boundary x = 0, 0 < y < 1 and x = 1,

0 < y < 1 by Fo, and otherwise by F1. Then the boundary condition of _,he problem is

E 10E

4 6aa On - g' on F0,

OE

On O, on Ofl Fo,

OT
On 0, on Of/,

where n is the local outward normal vector of the boundary.

Equations (2.2.1) and (2.2.2) form a system of coupled nonlinear partial differential equations which

must be discretized in space and time. In this section, we consider a discretization in space and will consider

a discretization in time in the next section.

The variational form of (2.2.1) and (2.2.2) can be written as follows: Find (E, T) 6 (H 1(f_)N L 2 ([0, T])) 2

such that

f_ _t udx + f DrVE" Vudx + fro liEuda
(2.2.4)

- f a.((T)4- E)udx- fro2gUda=O,

_ _tvdx + _ DtVT. Vvdx + _ aa((T)4 - E)vdx=O, (2.2.5)

for all (u, v) • (H 1(f_))2 and for all t • [0, tmax].

We discretize f_ by using a triangular grid containing edges, shown in Figure 2. The grid is generated by

connecting of the midpoints of the edges of the triangles from the coarsest discretization T1, which contains



FIG.2. Discretization of Domain

edges and conforms to the material interface boundaries in such a way that no triangle edges cross this

boundary. Let hj and Thj -- Tj, for j = 1,... , J, be given, where Tj is a partition of _ into triangles and hj

is the maximum diameter of the elements of Tj.

Define the Pl-nonconforming finite element spaces

Vj = {v e L2(12) :V[K is linear for all K • Tj,

v is continuous at the midpoints of interior edges}.

Then the nonconforming finite element discretization of (2.2.4) and (2.2.5) can be written as : Find

(Eh, T_) • (Vj x [0, tmax]) 2 such that

OEhudx_ fs_ " Vudx + _ro i+ o_ Dr(Eh,Th)VEh

(2.2.6)

- _ aa(Th)( (Th)4 - Eh)udx- _ro 2guda = O,

_ _-_vdx + _ Dt(Eh,Th)VTh "Vvdx + _ aa(Th)((Th)4 - Eh)vdx = O, (2.2.7)

for all (u, v) • V] and for all t • [0, tmax].

In above equations, to perform the integration in space, we use a three-point quadrature rule on each

triangle in Tj. Because the points where the degrees of freedom are defined and the quadrature points of

triangle are the same, we can easily compute the integration on each triangle and

fK D(x)O, Ckdx - D(x3)tKl s,k (2.2.8)

for all basis functions ¢i of V and K • Tj. Also, because Vu is a piecewise constant on each triangle in Tj

for all b • V, we compute [Vu I needed in D_ exactly.

3. Time integration and nonlinear iteration. In this section, we consider a discretization in time

and three nonlinear iterations, i.e., Newton, Picard and inexact Newton iteration.



Thetimederivativesarediscretizedasfirst-orderbackwarddifferences,withlumpingofthemassmatrix,
leadingto an implicitschemewhichrequiresthesolutionof a nonlinearproblemat eachtimestep.This
approachis first-orderaccuratein time,andischosenmerelyforconveqience,sincetheprincipalobjective
isthestudyof thesolutionofthenonlinearsystem.Higherordertemporaldiscretizationsaredemonstrated
to beworthwhilein [18].

Tosolvethenonlinearproblem(2.2.6)and(2.2.7)weconsiderthet)icardlinearizationmethodandthe
Newtonlinearizationmethod.In bothmethods,weneedto solvelinearsystemsto getcorrectionsat each
nonlineariterationstep.

Thefully implicitPicardlinearizationmethodseparatestheopera!orsinto linearpartsandnonlinear
partsandall nonlinearpartsareevaluatedat thepreviousnonlineariterationlevel,k - 1. This results in

the following system of equations:

E h - E'_-ludx + • Vudx +

At o (3.3.1)

-- a a' [ I,l h ' -- E'_'k)udx - 2guda = O,
,}

vdx + _ D'_'k-IVT_ 'k • Vvdx

.._ f O.an,k-1 n,k-1 3 n,k((T_, ) T£ - Ei,:'k)vdx = O,
Jr2

(3.3.2)

for all (u,v) • V 2. Because (3.3.1) and (3.3.2) are linear systems in (Eh'k,Th'k), we can easily calculate

their Jacobian.

To get the corrections (tiE, tiT) in the Picard Method at level k, we solve the following linear systems.

f_tudx + _ D_'k-iVSE" Vudx + _ro l _Euda
(3.3.3)

- f_ an'k-l((Tf'k-1)atiT - 6E)udx = F'_'k-l(u),

f_vdx + _ D_'k-iVtiT" Vvdx
(3.3.4)

+ f_ a_'k-l((Tf'k-1)3tiT - tiE)vdx = F_'k-l(v),

for all (u, v) • V] where

n k E'h 'k - h udx - _," --_hF}n'k_'71f_n'k • Vudx(u) = - A
(3.3.5)

_ .,.Lo 1 . k n k¢.,,'r,n k..4-_E h' uda+ fnaa' ((lh' ) -Er_'k)udc+ fro2gUdo',

F_,'k(v) : -- _ T_'k -- _-lodx _ _ D_'k_T: 'k " _vdx
At (3.3.6)

_ _n,k/ Iq'_n,k'_4 E_,k)vdx.-- oa ((lh ) --

For the fully implicit Newton linearization method it is somewhat more complicated to compute the

Jacobian at approximate solution points. To get the Jacobian, we have to calculate the derivatives of the

system with respect to (¢i, _bi) for all basis functions in Vj x Vj.



As the result of differentiation with respect to (¢i,¢i), to get the corrections (JE, ST) in Newton's

Method at level k, we solve the following linear systems.

._ _ n k-1 E n k--1 .Dr, _ tfTV h' Vudx+fro2tfEuda

- a_ 'k-1 l+3_]tfTudx+ a_'k-ltfEudx=Fn'k-l(u _
T_'- ] _ '"

vdx + [ Dn'k-IVJT- Vvdx + Dt, _ _TVT_' . Vvdx

E.,k_1 \

for all (u, v) E V 2 where

n k 2 n,k

Dr_,'_ = (Dr') IVEh I
(E;,kF +

D_,_ - 9(D_'k) 2
(T;,_). '

D_'Tk = r_5 +T,,k_3/2
6 t h ] '

OIVE'_,kI
where _ can be easily evaluated on each triangle in 7).

After linearization, we have to solve the linear systems

(Drn'k) 20IVE_'kl

E'_'k O:En'k_",h ,,

=

for each step where jk-1 is a Jacobian, which is computed by Picard's method or Newton's method.

In either method, we need for robustness to control the step length a where

T; ) = t T: ) +"

(3.3.7)

(3.3.8)

(3.3.9)

In this study, we control the step length by simply halving a until the residual of the updated solution is

less than the previous residual. In this control, we sometimes fail to get a proper step length, so we stop at a

fixed step length and perform the next nonlinear iteration. If the number of failures exceeds a fixed number,

then we go to next time steps by using the best approximation, which has the smallest nonlinear residual.

REMARK 3.1. The Newton method has, asymptotically, a second order convergence for nonlinear prob-

lems and the Picard method has only a first order convergence. However the resulting linear problem of the

Picard method is more easily solved than that of the Newton method because the Picard method lacks the

convection term as described in re]. [7].

To improve the efficiency of the Newton method, we can use an inexact Newton method [8]. When

the Newton iteration is "far" from convergence (i.e., the residual is large) there is no reason to solve the

linear system accurately. However, when the Newton iteration is "close" (i.e., the residual is "small") the

convergence rate of Newton's method is tightly coupled to the accuracy of the linear solution. To adjust the

amount of work done in the linear solve (via a convergence tolerance) we employ an inexact Newton method.



In theinexactNewtonapproach,theconvergencecriteriaforthelinearsolverisproportionalto theresidual
in thenonlineariteration.In equationformthisis

5T - _,F_ 'k-' ] -< ?2 \/,_,k- , (3.3.10)

where ?2 = 1.0 x 10 -2 is the value used in this study unless otherwise noted. We note that [13] shows how

to adaptively select ?2 to recover asymptotically full second order convergence.

4. PGMRES and multigrid preconditioning. In this section we explain PGMRES, which is a

combination of a Krylov-based linear iterative method, and multigrid, which is well known as a successful

preconditioner, as well as a scalable solver even in unaccelerated form, f,)r many problems.

GMRES [23] is a well known solver for non-Hermitian problems. In practice, GMRES can be restarted

after m steps, where m is some fixed integer parameter, to save storage by accepting a generally less rapid

convergence.

We describe the restarted PGMRES for solving

Agx = b (4.4.1)

with preconditioning matrix Bj.

PGMRES(m) Algorithm 4.1.

(1) Start : Choose x0 and compute r0 = Bj(b - Ajxo), _ -- Ilroll2 _md vl = ro/_.

(2) Iterate : For j = 1,... ,m do:

Compute w := BjAjvj

For i = 1,... ,j, do:

hi,_ := (w, vi)

w := w - jidvi

Enddo

Compute hj+l,_ = Ilwl12and v_+l = w/hj+l,j

Enddo

(3) Form the approximation solution:

Define Vm := [Vl,..., vm],

i-Ira _- {hi,j}l<i<j+l;l<j__m

and set xm = Xo + Vmym, where ym minimizes II_el -/_mYH, Y E R m.

(4) Restart:

Compute rm = Bj(b - Ajxm); if satisfied then stop

else compute x0 := xm, _ = Hr.dl and Vl ---- rm/_ and go to (2).

Arnoldi iteration constructs an orthogonal basis of the left preconditioned Krylov subspace

Span{ro, BjAjro,. . . , (BjAj) m- lro}.

It uses a modified Gram-Schmidt process, in which the new vector to be orthogonalized is obtained from

the previous vector in the process. All residual vectors and their norms 1hat are computed by the algorithm



correspondto thepreconditionedresiduals,namely,zm = Bj (b- Ajxm), instead of the original (unprecon-

ditioned) residual b - Ajxrn. In addition, there is no easy access to these unpreconditioned residuals, unless

they are computed explicitly. So we monitor these preconditioned residuals to stop PGMRES iteration to

solve linear problem.

Next, we consider Multigrid Preconditioner Bj.

To define a multigrid method, we need to define intergrid transfer operators between nonconforming

finite element spaces. Due to the non-nestedness of nonconforming spaces, there is not a natural intergrid

transfer operator. In previous studies of nonconforming multigrid method[I, 5, 6, 9], average value of two

adjacent elements are used to set the value of a node. A nonconforming multigrid method with this intergrid

transfer operator is a good solver for linear systems and some nonlinear systems that have smooth nonlinear

coefficients.

To get the coarse level approximate linear system for (3.3.9), we need coarse level approximations of

(E_ 'k-1 , T_ 'k-l) and (E_ -1 , T_-I). If the approximate solution (E'_ 'k-1 , T_ 'k-i) varies rapidly in space,

fEn,k-1 Tn,k- l _then some coarse level approximations of (E_ 'k-1 ,Th 'k-l) may have negative values. However _ h , h J

are required to be positive for the computation of D_ 'k-1. Either we cannot generate the coarse level systems

or they may become nearly singular, making it hard to solve the coarse level problems.

To overcome these difficulties, we use a new and simple intergrid transfer operator called the covolume-

based intergrid transfer operator, which preserves only piecewise constant functions [15]. It is well known

that, to get a good convergence factor in multigrid algorithms, intergrid transfer operators should preserve

higher order functions [19]. Therefore the multigrid method with this intergrid transfer operator converges

slowly compared to average value intergrid operator to solve linear systems. However preservation of pos-

itivity of nodal values of the fields is critical. So, we use the covolume-based intergrid transfer operator

to obatain the coarse level systems and the average value intergrid operator to interpolate the solution be-

tween levels (coarse-to-fine and fine-to-coarse) when solving the linear systems in Picard'method or Newton's

method.

Let Aj; (Vj) 2 --+ (Vj) 2, j = 1,... , J be the discretization operator on level j and Ij : (Vj_I) 2 --+ (Vj) 2,

j = 2,... , J, be the coarse-to-fine intergrid transfer operator. Also, we define the fine-to-coarse intergrid

transfer operator P_i-1 : (VJ) 2 -e (Vi_l) 2 by

(1jr, w) = w • (vj_l)2,vw • (yj)

Finally, let Rj : (Vj) 2 --+ (Vj) 2 for j = 1,..., J be the linear smoothing operators, let R T denote the

adjoint of Rj with respect to the (.,-) inner product, and define

I odd,

[ R y, l even.

Following [2], the multigrid operator Bj : (Vi) 2 -_ (Vi) 2 is defined recursively as follows.

Multigrid Algorithm 4.2. Let 1 < j < J and p be a positive integer. Set B1 = A_ -1. Assume that

Bj-1 has been defined and define Big for g e (Vi) 2 by

(1) Set x °=0andq°=0.

(2) Define x t for l = 1,... ,re(j) by

X t = X 1-1 + R(l+m(J))(g _ Ajx_-I).



(3) Define ym(j) = xm(j) + ijqp, where qi for i = 1,... ,p is defined by

qi = qi-1 + Bj_l[pO_l(g _ Ajxm(J)) _ 4j_lq_-1].

(4) Define yt for l = re(j) + 1,... ,2m(j) by

,_(l+m(j)), t-1 ).yl = yl-1 + l_j (g - Ajy

(5) Set Big -- y2m(j).

In Multigrid algorithm 4.2, m(j) gives the number of pre- and post-smoothing iterations and can vary

as a function of j. If p = 1, we have a V-cycle multigrid algorithm. If t_ = 2, we have a W-cycle multigrid

algorithm. Other versions of multigrid algorithms without pre_ or post-smoothing iterative can be analyzed

similarly. A variable V-cycle multigrid algorithm is that for which the number of smoothing m(j) increases

exponentially as j decreases (i.e., p = 1 and re(j) = 2J-J).

REMARK 4.1. One can use the multigrid algorithm to solve the ._ystems as a _ee-standing iterative

method. Usually, one uses V-cycle and W-cycle multigrid algorithms to this end and uses V-cycle and

variable V-cycle multigrid method as preconditioners of Krylov-type metl_ods such as PCG, because, when Aj

is symmetric positive definite, the V-cycle multigrid operator Bj is a symmetric positive definite operator on

(Vj) 2, but the W-cycle multigrid operator is not in generally [3]. Many researchers show that convergence

of W-cycle multigrid for the nonconforming and conforming cases and V-cycle multigrid for the conforming

case are good preconditioners [1, 2, 5, 6, 9, 14, 16, 25]. In this problem, we use V-cycle multigrid method

as a preconditioner of GMRES.

5. Algorithm performance and results. In this section, we study the performance of the Newton,

Picard, and inexact Newton methods on P1 nonconforming finite elem(:nt method on two model problems

with the only difference between the problems being homogeneity. In 1he two examples, we use the same

triangulations, namely 12800 triangles, 19296 edges, and 6497 vertices. Because nodes are on midpoints of

edges in a P1 nonconforming method, the number of degrees of freedom of this problem is 38592.

For problem 1, we consider a homogeneous material with atomic r:,umber z = 1 and t¢ = 0.01 on the

whole domain. The initial conditions are E ° = 1.0 x 10 -5 and T o = (E°) °25. The problem is run out to

time t = 3.0 and nonlinear convergence tolerance within a time step is defined as ItF(uk)ll2 _< 1.0 × 10 -6 for

problem 1. We run with several time steps of 0.001, 0.002, 0.005, and 0.01.

In Figure 3, we plot the contours of temperature T at t = 1.0, 2.0, 3.0. Table 1 compares linear solve

requirements and nonlinear iterations. Figure 4 depicts the nonlinear convergence behavior of Newton

method, Picard method, and Inexact Newton method at time t -- 1.0.

Figure 3 shows that contours of temperature propagate parallel to the inlet boundary and reproduce on

an unstructured grid the propagation of the one-dimensional case. Table 1 and Figure 4 show that Newton's

Method is very efficient compared to Picard's method, and slightly more efficient compared to the inexact

Newton method, in terms of nonlinear iterations per time step.

Inexact Newton needs more nonlinear iterations in comparison to Newton's method, but has the best

performance overall because this method needs the smallest number of linear iterations. Also, Table 1 shows

that the number of linear iterations in each nonlinear iteration of the Picard method is smaller than that of

the Newton Method. This means that the linear systems from Picard's method are more easily solved than

the linear systems from Newton method.

In Table 2, we report the accuracy as a function of time steps by the L2-error of the solution which

is defined as Ilu - Ubasel}2 where Uba_e is obtained by using a time step 0.0001. This result shows that the

L2-error in time is first order.



ill!
i Ill[

!ll!

litll
I II
l lll|

(a) t = 1.0

I

(b) t = 2.0

FIG. 3.

!
!
i

(c) t = 3.0

Contour of Temperature of Problem 1

For problem 2, we consider an inhomogeneous material with atomic number z = 10 inside the box and

z = 1.0 outside, as shown in Figure 5. We changed the nonlinear convergence tolerance within a time step

to be IIF(uk)[[2 N 1.0 x 10 -a to reduce the simulation times.

In Figure 6, we plot the contour of temperature T at t = 1.0, 2.0, 3.0, 4.0, 5.0. Table 3 compares linear

solve requirements, nonlinear iterations, and number of failures to meet the convergence tolerance. Figures 8,

9, 10 demonstrate the nonlinear convergence behavior of the Newton, Picard, and inexact Newton methods

at times t = 1.0, t = 2.5, and t = 4.0.

As energy propagates, temperatures rapidly change near the front and near the layer where the two

different materials meet. As more time passes, the temperature smoothly propagates. Figures 8, 9, 10 show

that there are many step length controls to get the solution of the nonlinear problem when the solution

changes rapidly (t = 1.0, t = 2.5) but there is no need for step length control when the solution is smooth

(t = 4.0) in any of the three methods.
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TABLE 1. Algorithm performance as a function of time step for problem 1 and

Method dt # of dt

0.001 3000

Newton 0.002 1500

method 0.005 600

0.01 300

0.001 300O

Picard 0.002 1500

Method 0.005 600

0.01 3O0

Inexact 0.001 3000

Newton 0.002 1500

Method 0.005 600

0.01 300

tot #

nonlin-

ear

6226

4116

2120

1334

24935

15389

7784

5320

8648

4534

2254

1450

ave #

nonlin

iter �dr

2.1

2.7

3.5

4.4

8.3

10.3

13.0

17.7

2.9

3.0

3.8

4.8

tot #

linear

49851

38970

28197

21986

181227

126152

70165

46194

28468

15928

9878

7761

ave #

lin /dt

16.6

26.0

46.8

73.7

60.4

84.1

116.9

154.0

9.5

10.6

16.6

25.9

TABLE 2. L2-error at t = 3.0

time steps L2(error)

0.001 0.00884

0.002 0.01796

0.005 0.04060

0.01 0.06676

time period of 3. 0

ave # lin

/nonlin

8.0

9.5

13.3

16.5

7.3

8.2

9.0

8.7

3.3

3.5

4.4

5.4

Figure 6 shows that the solution of the nonconforming finite element method is very similar to the

solution of finite volume method with edge-based flux limiter [20].

In the aspect of performance, the behavior of problem 2 is similar to problem 1 with the exception that

problem 1 does not require step length control.

To estimate the accuracy as a function of time step size, we report the L2-error of the solution in Table

4 (based on an accurate solution with dt = 0.0001). The relative L2-error of simulations with dt = 0.002,

0.005, 0.01 compared to the L2-error of dt = 0.001 is ploted as a function of time in Figure 7. These results

show that the L2-error in time is first order at the beginning of simulation until t = 3.0 but gradually

deteriorates. This deterioration may be introduced by the nonlinear convergence error within a time step

because the accumulation of the nonlinear convergence error will dominate other errors (space and time

discretization error) as time steps grows. If we use a finer nonlinear _'onvergence tolerance, then we can

delay this deterioration to longer time.

6. Conclusions. We solved unsteady implicit nonlinear radiation diffusion problems by an unstruc-

tured/)1 nonconforming finite element method. P1 nonconforming finite element methods resolve very sharp

changes of energies on the heterogeneous domains, similarly to results of the finite volume method with an

edge-based flux limiter. The inexact Newton method has the best performance overall and Preconditioned

GMRES with nonconforming multigrid preconditioner to solve linear problems works well. In P1 noncon-

forming multigrid, the covolume-based intergrid transfer operators are useful to solve radiation transport

11
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problems because the positivity preserving property is needed.
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TABLE 3. Algorithm performance as a function of time step for problem 2 and

Method dt # of dt

0.001 5000

Newton 0.002 2500

method 0.005 1000

0.01 500

0.001 5000

Picard 0.002 2500

Method 0.005 1000

0.01 500

Inexact 0.001 5000

Newton 0.002 2500

Method 0.005 1000

0.01 500

tot #

nonlin-

ear

11980

6745

4314

2975

34074

21391

12083

7891

117O1

7045

4559

3259

ave #

nonlin

iter/dt

2.4

2.7

4.3

6.0

6.8

8.6

12.1

15.8

2.3

2.8

4.6

6.5

tot #

linear

118186

83839

76436

68770

274482

204722

145875

105234

42669

32703

30183

27516

ave #

lin/dt

23.6

33.5

76.4

137.5

54.9

81.9

145.9

210.5

8.5

13.1

30.2

55.0

time period of 5.0

ave # lin

/nonlin

9.9

12.4

17.7

23.1

8.1

9.6

12.1

13.3

3.6

4.6

6.6

8.4

TABLE 4. L2-error at t = 5.0

time steps L2(error)

0.001 0.00017

0.002 0.00019

0.005 0.00048

0.01 0.00108

_ 0.001dt
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FIG. 7. The relative LU-error compared with L2-error of dt = 0.001 (L2(dt)/L2(dt = 0.001) x O.O01/dt)
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